The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise.
نویسندگان
چکیده
In this study we examined the timecourse of induction of brain-derived neurotrophic factor (BDNF) mRNA and protein after 1, 3, 5, 7, 14 and 28 days of exercise in the rat. To measure the expression of mRNA for individual BDNF exons we utilized a semi-quantitative RT-PCR technique, while BDNF protein was assessed using commercial ELISA kits. We demonstrated that the distance run by animals increased significantly (P<0.05) after 4 weeks. BDNF protein was significantly (P<0.05) increased after 4 weeks of exercise, while the mRNA for individual BDNF exons increased significantly (P<0.05) over the timecourse (exon I after 1 and 28 days and exons II and V after 28 days). The Morris water maze was then utilized to demonstrate that 3 weeks of prior exercise enhanced the rate of learning on this task. Exercise, therefore, was shown to modulate BDNF induction in a time-dependent manner, and this may translate to improvements in neurotrophin-mediated tasks within the CNS.
منابع مشابه
The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats
Objective(s) The aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ)-induced diabetic rat. Materials and Methods A total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise). Diabetes was induced by injection of single dose of STZ. Exercise ...
متن کاملDifferential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain
Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...
متن کاملThe Protective Effect of Voluntary Exercise on the Hippocampal Cerebral Dopamine Neurotrophic Factor Level against Intraventricular Injection of 6-hydroxydopamine in Rats
Background & Aims: The purpose of this research was to study the protective effect of pretreatment with a voluntary exercise on hippocampal level of cerebral dopamine neurotrophic factor (CDNF) after damage induced by intraventricular injection of 6–hydroxydopamine (6-OHDA) in rats. Methods: In this experimental study, 24 Wistar rats were randomly divided into 4 groups of healthy control, healt...
متن کاملThe Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat
Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...
متن کاملThe effect of eight weeks of aerobic training and Ritalin on hippocampus Brain-derived neurotrophic factor in hyperactive rats
Introduction: Recently increased an expansion of interest in non-pharmacological interventions for attention-deficit/hyperactivity disorder. The aim of this study to investigate the effect of eight weeks of aerobic training and Ritalin on hippocampus Brain-derived neurotrophic factor in hyperactive rats. Methods: To implementation of this experimental research, 33 Wistar rats (weigh, 180-220g)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 363 1 شماره
صفحات -
تاریخ انتشار 2004